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We design a discrete artificial boundary condition for the steady 
incompressible Navier-Stokes equations in stream function vorticity 
formulation in an infinite channel. The new boundary condition is 
derived from a linearized Navier-Stokes system and a fast iterative 
method. Numerical experiments for the nonlinear Navier-Stokes 
equations are presented. The discrete artificial boundary condition is 
compared to Dirichlet and Neumann boundary conditions for the f low 
over a forward or backward facing step and for f low past a rectangular 
cylinder. Numerical results show that our boundary condition is very 
effective. ~ 1994 Academic Press, Inc. 

1. INTRODUCTION 

Many numerical simulations of viscous fluid flow 
problems are given on unbounded domains, such as fluid 
flow around obstacles and fluid flow in a channel. One dif- 
ficulty in these problems is the unboundedness of the physi- 
cal domain. In engineering, the usual method is to introduce 
an artificial boundary to reduce these problems to a 
bounded computational domain and to set up an artificial 
boundary condition at the artificial boundary, such as 
Neumann or Dirichlet boundary conditions for the 
dependent variable. In general, the above artificial boundary 
conditions are only very rough approximations of the exact 
boundary condition at the artificial boundary. When high 
accuracy is required, the bounded computational domain 
must be quite large, and the cost of the computation is 
increased. In practice, in order to limit the computational 
cost, the artificial boundary must be chosen not too far from 
the domain of interest. During the last 10 years ways to 
design artificial boundary conditions with high accuracy on 
a given artificial boundary or solving partial differential 
equations on an unbounded domain have been studied 
often. For  instance, Goldstein [1 ] studied Helmholtz-type 
equations in waveguides and other unbounded domains. 
The problem was replaced by a boundary value problem on 
a bounded computational domain. The behavior of the 
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solution near infinity is incorporated in a nonlocal bound- 
ary condition. Feng [2] designed the asymptotic radiation 
conditions for the reduced wave equation. Han and Wu 
[3, 4] presented the exact boundary conditions at an artifi- 
cial boundary for the Laplace equation and the linear 
elasticity system; moreover, a sequence of approximations 
to the exact boundary condition at the artificial boundary 
was given. The exact boundary condition at an artificial 
boundary for partial differential equations in a cylinder was 
obtained by Hagstrom and Keller [5].  Shortly thereafter, 
they used this technique to solve nonlinear problems [6]. A 
family of artificial boundary conditions for unsteady Oseen 
equations in the velocity pressure formulation with small 
viscosity was developed by Halpern [-7], Halpern and 
Schatzman [-8], which was then applied to unsteady 
Navier-Stokes (N-S)  equations. Nataf  [9]  designed an 
open boundary condition for steady Oseen equations in 
stream-function vorticity formulation, which is applied to 
viscous incompressible fluid flow around a body in a flat 
channel with slip boundary conditions on the wall. 

Recently Hagstrom [10, 11] proposed asymptotic 
boundary conditions at artificial boundaries for the simula- 
tion of time-dependent fluid flows and applied them to solve 
nonlinear N-S equations. 

In this paper we consider a steady viscous incompressible 
fluid flow around a body in a no-slip flat channel defined by 
{ - co < x < ~ and 0 ~< y ~< L }. In a region sufficiently far 
from the body, the flow is almost Poiseuille flow, equal to 
u~(y) = ~ y ( L -  y) and v~ = 0, ct is a positive constant, in 
which N-S equations can be linearized to a system of linear 
N S equations, but they are not Oseen equations. In this 
case the techniques developed in [7 9] cannot be applied 
directly, because the coefficients of the linear N-S  equations 
are not constants. The purpose of this paper is to design a 
discrete artificial boundary condition for the linear N-S  
equations in stream-function vorticity formulation and to 
apply it to numerical simulations of the steady incom- 
pressible viscous fluid flow in a channel. 
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2. A SYSTEM OF LINEAR NAVIER-STOKES EQUATIONS and the boundary conditions 

In this paper we consider the numerical simulation of a 
steady incompressible viscous flow arounding a body 
(domain g2~) in a no-slip channel defined by 9t x [0, L].  Let 
u, v, and p denote velocity and presure, then u, v, and p 
satisfy the following N-S equations in domain f2=  
9t x (0, L ) \ ~ , :  

Ou Ou @ 
u -~-£x + V -~y + ~x = V A u, (2.1) 

Ov 0v @ 
U -~x + V -~-] + -~-] = v d v , (2.2) 

0u Ov 
O--x + ~--]y = O, (2.3) 

and boundary conditions 

UI,=o,L =VI~,=O,L=O, 

U(X, y) --" U+(y), 

v(x, y)  ~ O, when 

c < x <  + ~ ,  (2.10) 

X-* +o0. 
(2.11) 

Let ~ and co denote the stream-function and vorticity, then 

0y = u, 0x v, (2.12) 

Ov Ou 
m=0- -~-0y ,  (2.13) 

and Eqs. (2.1)-(2.3), and the boundary condition 
(2.4)-(2.6) are reduced to 

u l ,  =0, L = VI,,=O,L = 0 ,  - ~  < x <  +oo, (2.4) 

ulea,= vlea,=O (2.5) 

u(x, y)  ---* u ~ ( y )  = o~y(L - y), 
(2.6) 

v ( x , y ) - - . v ~ = O ,  when x--.  _+ oo, 

where v > 0 is the kinematic viscosity. 
Taking two constants b < c, such that Oi c (b, c) x (0, L), 

then £2 is divided by the artificial boundaries Fh = {x = b, 
0 ~< y ~< L} and F~ = {x = c, 0 ~< y ~< L} into three parts, f2 h, 
g? r, and O c, with 

Oly=o=0, 

• • 0• L 

= const, 

0o) 0co 
U-~x+V-~- fy -VAo)=O,  in f2, (2.14) 

A~9 + co = 0 ,  in f2, (2.15)  

Oly=L=OL =- u+(s)d=, 

- ~ < x <  + ~  (2.16) 

- ~ < x <  + ~  (2.17) 

00 
0--n = 0, on 0g2 i (2.18) 

f2b= {(x, Y)] - o o  < x  <b,  0 <  y < L } ,  

f 2 r =  {(x, y ) l b < x < c , O < y < L } \ ~ , ,  

f 2 c = { ( x , y ) [ c < x <  + c ~ , 0 < y < L } .  

~ v 

O ~ ~ ( y )  = u~(s) ds, 

~ o - - - * ~ ( y ) -  - u ' ~ ( y ) ,  
(2.19) 

When Ibl, c are sufficiently large, in the domain g2 b w gT the 
flow is almost Poiseuille flow. So N-S equations (2.1)-(2.3) 
can be linearized, namely on domain gT (and O~), the solu- 
tions u, v, and p of the problem (2.1)-(2.6) approximately 
satisfy the linear N-S  equations, 

Ou @ 
u ~ ( y ) = - + = - - = v d u ,  in g2 c, (2.7) 

Ox tJx 

Ov @ 
u ~ ( y ) ~ - - + ~ - - = v A v ,  in O c, (2.8) 

ox oy 

0u Ov 
: -  + :-- = 0, in f2", (2.9) 
o x  u y  

where O/On denotes the outward normal derivative. 
Furthermore, linear N-S equations (2.7)-(2.9) 

boundary conditions (2.10)-(2.11 ) are reduced to 
and 

~,ly=o=O, 

~Y~ +v=O,L=O' 

~ --* ~ ( y ) ,  

o~ ~ ¢o~(y), when 

02¢ &o 
u ' ~ ( y ) ~ - ~ - ~ y - u o ~ ( y ) ~ x + V A c o = O ,  in f2', (2.20) 

A 0 + co = 0, in f2 '+, (2.21) 

O[y=L=OL,  C < X <  +o0 (2.22) 

C < X <  +o0 (2.23) 

x-~ +o0 
(2.24) 



DISCRETE ARTIFICIAL BOUNDARY CONDITION 203 

Since the boundary condition on the artificial boundary 
Fc is unknown, the problem (2.20)-(2.24) is an incompletely 
posed problem. It cannot be solved. Let 

¢1 . . . .  = ~c(Y), co lx=,=coc(Y) ,  O<~y<~L. (2.25) 

For given functions ~'c(Y) with f ie(0)=0,  ~%(L)=~'L, 
(d~c /dy ) l y=o ,L=O,  and co,(y), we discuss the numerical 
solution of problem (2.20)-(2.25) and design a discrete 
artificial boundary condition on the line F c for the problem 
(2.14) (2.19). 

Let 

Xj = [COj, 1 . . . . .  OJj, N 1'  I//j, 1 . . . . .  ~/j,N__ 1 ] T, 

X ~  = [ c o o ¢ ( Y l )  . . . . .  COoc,(YN-,), q/o~(Y,) ..... ~ ( Y N - 1 )  "IT, 

then Eqs. (3.1)-(3.6) are equivalent to the system of linear 
algebraic equations including infinitely many unknowns: 

For given X o ~ 9 ~  2N 2, find {XI, X2 .... }, such that 

AoX1 , + B o X j  + CoXj+ , = Do, 

lim Xj = X~,  
j ~  + o c  

j = l , 2  ..... 
(3.7) 

3. A D I S C R E T E  A R T I F I C I A L  B O U N D A R Y  C O N D I T I O N  where 

We now consider the finite-difference approximations of 
problem (2.20)-(2.25). Let A x  and Ay  = L / N  be the two 
mesh sizes, where N is a positive integer. The domain 12 c is 
discretized by { (xj  = e + j Ax ,  Yl, = k Ay) ,  j = O, 1, 2 ..... k = 

0, 1, 2 ..... N}. The following finite difference scheme is used 
to solve problem (2.20)-(2.25), 

U'~(Yk) [ ~ l j + l , k + l - - ~ l j + l , k - - l - - ~ l j  1 , k + l - ~ l j - l , k  1]  
4 A x  A y  

U~c(Yk) 
2 A x  [coj+ l,~-- c°j- 1,*] 

+ V [cOj+ I ,k--  2cOj, k + 2 1,k 

_~_ cO/ k + i - -  2coJ, z + cOj, k -- 1 1  = 0 ,  (3.1) 

~j  + 1,/~ -- 2~j,k + ~/1-- 1,/¢ ~li, k + l - - 2 ~ l j ,  lc+~lj, k--1 

A x  2 + Ay2 

+ % , , = 0 ,  l ~ < k ~ < N - 1 ,  j = l ,  2 ..... (3.2) 

with boundary conditions 

~.o = 0, ~ j N = t P L ,  j = 0 ,  1,2 ..... (3.3) 

1 3 ( % , o  - ~j,,) 
0~/,o = -- -~ CO/, 1 + Ay2  , 

1 3 ( ~ I j ,  N - -  ~Ij, N 1)  

O),/,N ~- - - - 2  CO/,N--1 "~ Ay2 

j = 0, 1, 2 ..... (3.4) 

lim ¢ / k = ¢ ~ ( y ~ ) ,  lim c%,~=co~(yk), (3.5) 
j ~  + ~  j ~  + ~  

fro,* = ffc(Y*), C°o,k = coc(Yk), 

k = 1, 2 ..... N -  1. (3.6) 

0 

0 

0 
A o =  

0 

0 

0 

0 

Vrl y 

0 

0 
B°= 1 

0 

0 

0 

0 

0 

0 
C O = 

0 

0 

0 

0 

0 0 . . .  0 0 - 6 1  0 

% 0 . . .  0 6z 0 - 6 2  

0 % . . .  0 0 63 0 

0 . . .  0 o~,v 1 0 0 . . .  

0 0 . . .  0 ~lx 0 0 

0 0 . . .  0 0 qx 0 

0 0 . . .  0 0 0 fix 

0 . . .  0 0 0 0 . . .  

Y t l y  0 " ' "  0 -3vtlZy 0 0 

f12 Vtly . . .  0 0 0 0 

Yt l y  •3 " ' "  0 0 0 0 

0 . . .  vtly fiN-1 0 0 . . .  

0 0 " ' "  0 ~]xy ~ y  0 

l 0 " ' "  0 f l y  t l x y  ~ y  

0 1 . . .  0 0 ?]y ~ x y  

0 . . .  0 1 0 0 . . .  

0 0 . . .  0 0 61 0 

72 0 . . .  0 - 6 2  0 62 

0 73 "'" 0 0 - 6 3  0 

0 " ' "  0 ~ N  1 0 0 

0 0 --. 0 q.~ 0 0 

0 0 .-- 0 0 t/x 0 

0 0 ... 0 0 0 t/x 
• ,, ". . . . .  . 

0 -.. 0 0 0 0 . . .  

• "" 0 

• .. 0 t 

• "" 0 

6N_1 0 

" ' "  0 

• "" 0 

" ' ,  0 

0 q~ 

" ' "  0 

• .. 0 1 

• "" 0 

0 -3vrl~ 

• "" 0 

" ' "  0 

• "" 0 

• °. • 

qy qxy 

• .. OI 

• "" 0 

• "" 0 

• " - -6N 1 0 

• "" 0 

• "" 0 

• "" 0 

o j 
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with 

F 

- m 

u~(yO 
2 A x  ' 

u ' ( y k )  
4 Ax  Ay '  

k = l , 2  ..... N - l ,  

k = l ,  2 ..... N - I ,  

2v 5v 

Ax  2 2 Ay 2' 

2v 2v 
fl k -- ,~ X 2 A y2 ' 

2v 5v 
fiN 1-- Ax  2 2 Ay 2' 

1 1 

q.,. - Ax  2 , rl.~. = Ay 2 , 

v u~(yk) 

7k Ax  z 2 Ax  ' 

k = 2  ..... N - 2 ,  

qx,. = - 2 ( q x  + q,.), 

k = l ,  2 ..... N - I ,  

and 

= d a- D o  [dl ,  d2 . . . . .  2 N - - 2 ]  ' 

with 

dk=0 ,  k = l , 2  ..... N - 2 ,  N ..... 2 N - 3 ,  

3v 1 
dN-  1 -- Ay4 ~t L, d2N 2 -- Zly2 ~t L" 

At first we present a special solution of the problem (3.7). 
Let 

(Ao+Bo+Co)X~ = G =  [ g l ,  g2 ..... g2N-2]  T- 

gN_l+k=Ogo~(yk)+ ~°v(yk 1)-- 2ff~(Y~) + ~P~(Y~+ 1) 
Ay2 

2 <~ k <~ N -  2, 

- - 2 ~ ( Y N  1)+I/ /~(YN 2) 
g 2 u _  2 = f O ~ ( Y u _  l)"} - Ay 2 

Since O~(y)  is a polynomial of degree three, co~(y) is 
a polynomial of degree one and ¢ ~ ( y ) + ~ o ~ ( y ) = 0 ,  
~ < ( 0 ) =  ~<(  ) =  ~<(L)  0, ~ ( L ) =  ffL, so we obtain 

& . = 0 ,  k = l , 2  ..... N - 2 ,  

3v 3v 
gN 1-- Ay4 ~-I~(YN)= -- ~ 4  t~L, 

gN i+k =0 ,  k = l , 2  ..... N-72,  

@~o(Yu) @L 
g 2 N -  2 -- - -  -- ~ y 2  Ay2" 

Hence we have 

(Ao + Bo + Co) X~ = Do. (3.8) 

From Eq.(3.8), we know that { X j = X ~ , j = I , 2  .... } is a 
solution of problem (3.7) with Xo = X~.  

Let 

Y j = X j - X ~ ,  j = 0 ,  1 ..... (3.9) 

then the problem (3.7) can be rewritten as follows: For  
given Yo~9~ 2N-2, find { Y j , j =  1, 2 .... } such that 

A o Y j  l + - B o Y j ~ - C o Y j + l = O ,  

lim yj = 0. 
j ~ + ~  

j = l , 2  ..... 
(3.10) 

A computation shows that 

5v v 3v 
g l -  2Ay2°9~(Yl)+--oo~(Y2)--'-~y4O~(yl),Ay 2 

v 2v v 
gk = zjy"'~ (2)oc(Yk 1 ) -- z~y"" ~ O),:x~(Yk) "Jr" zly-~ ('O°v(Yk +1 ), 

2 ~ k ~ N - 2 ,  

gN 1 ~ - - - -  
5V Y 

2 A y 2 ~ ( Y N  1 ) -~ ~y2 (~0~x~' (YN-- 2) 

3v 
zly4 ~c(YN--  1), 

gN = 60~c(Yl) -~ - - 2 ~ ( Y l )  + ~ ( Y 2 )  
Ay2 

From [12] we know that there are three methods for 
solving the problem (3.10). One of them is called the direct 
method, which reduces the problem (3.10) to a eigenvalue 
problem of a ( 4 N -  4) × ( 4 N -  4) matrix. In order to obtain 
the solution of problem (3.10), we must compute all eigen- 
values and corresponding eigenvectors of the matrix. We 
prefer to use the fast iterative method [12] to solve the 
problem (3.10), which is cheaper. In (3.10) for j -  1 and j +  1 
we have 

Y j _ ~ = - B o I A o Y ~  2 - B o ' C o Y j ,  

Ys+ l = - - B o l A o  Y ; -  B o l C o  I11+2, 

j = 2 , 3  ..... (3.11) 

j = 0, 1 ..... (3.12) 

Substituting (3.11) and (3.12) into (3.10), we obtain 

A1Yj_2+BIY j -k -CIY j+2=O,  j = 2 , 3  ..... 



DISCRETE ARTIFICIAL BOUNDARY CONDITION 205 

with with 

A1 = - A o B ~ l A o ,  

B1 = B o - A o B ~ l C o -  CoB~lAo, 

C1 = - CoBolCo • 

This procedure can be repeated. After k (k = 1, 2 .... ) itera- 
tions, we have 

with 

j = 2 k ,  2k+ 1 ..... (3.13) 

A k = - - A k - l B k l l A k  1, 

B ~ = B ~ - I - - A k - l B k 1 1 C k  l - - C k - l B k l - l A k  1, 

C ~ = - - C , - 1 B ~ I C k  l, 

and, furthermore, from (3.13) we have 

Y i = - - B k l A k  yj zk--Bk lCk y/+2k, 

j = 2  k, 2k+ 1 ..... 

(3.14) 

k = 0 ,  1,2 ..... 

(3.15) 

3 k = A i , _ a - C ' k  i B k l A k ,  

C k = - - C k  1B[ICk. 
(3.20) 

Supposing that the limits exist, let 3 o = lim~ ~ o Ak, C~_ = 
limk~ ~ Ck. In (3.19) letting k go to infinity we obtain 

A o Y o +  BoYI=O. 

Furthermore, we have 

X l =  - T o Xo  + (To  + I) X o  (3.21) 

with To = B o 1 3 ~ ,  w h e re / i s  the unit matrix. 
For given integer k ( k =  1,2 .... ), we can obtain a 

sequence of approximate relationships between Yo and Y1 

Ak Yo + Bo Y1 = O. 

Moreover, we have 

X 1 = - TkX  0 -[.- ( I+ Tk) X o  (3.22) 

We now return to the problem (3.10). Consider the matrix 
equation 

Ao Y0 + Bo YI + Co Y2 = 0. (3.16) 

Inserting (3.15) with k = 1,j = 2 k into (3.16) and eliminating 
II2, we obtain 

31Yo W BoY1+ CI Y2 ' + 1 = 0  (3.17) 

with Tk = Bo 13~, k = 1, 2 ..... 
Let W = [6qO)(C, yl)/t~X . . . . .  630)( c, YN 1)/ox, ~ ( C ,  Yl)/  

Ox ..... #~,(c, YN 1)/OX] T, then approximately we obtain 

X1 = Xo + AxW. (3.23) 

Substituting (3.23) into (3.21) and (3.22) we obtain the 
following discrete artificial boundary conditions on artificial 
boundary F c : 

1 
with W =  - -~x ( T °  + I)( X° - X °  )' (3.24) 

A1 = A o -  CoBllA1, 
C1= - C o B I l C 1  • 

1 
(3,18) W =  - - ~ x  ( Tk + I)(Xo - Xo) ,  k = 1, 2 ..... (3.25) 

Inserting (3.15) with k = 2, j  = 2* into (3.17) and eliminating In a similar manner, we can obtain discrete artificial bound- 
Y22, we have ary conditions on the boundary Fb = {x = b, 0 <~ y <<. L }. 

with 

32 Yo + Bo YI + Cz Y22+1 = 0, 

A2 = 3 1 -  ClB21Az ,  

C2 = - C'1Bf IC 2. 

Continue this procedure. After k time steps, we obtain 

4. NUMERICAL IMPLEMENTATION A N D  EXAMPLES 

We now consider the numercial solution of the original 
problem (2.14)-(2.19) on the given computational domain 
(2 r. This steady state solution is computed as the limit in 
time of the unsteady N-S equations, which are made 
discrete by an ADI method [13]. The inflow boundary 
conditions 

Ak Yo + Bo Y1 + Ck Y2k+l = 0 (3.19) ~9(b, y ) = ~ o ( y ) ,  o9(b, y)=OOo(y), O<~ y<~L, (4.1) 

581/114/2-4 
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y = L  

. . . . . .  FZ3 I - ¸  • y = 0  
X = C  x = b  

FIGURE 1 

streamlines vorticity 

FIGURE 2 

T A B L E  I 

Errors i = I i = II i = III 

oJ 0.480768 0.204270 0.087274 
~p 0.013783 0.003086 0.001290 

are prescribed on the artificial boundary F b. On the 
artificial boundary F c, the following three different types of 
outflow boundary conditions on 09 and ~ are used in each 
example for comparison: 

Type I. Dirichlet boundary condition, 

~(c, y) = ffo~(Y), co(c, y) = cow(Y); 

O.(X}6' 

0.0012 

0 . 0 0 6 '  

0.0012 

i : i 0.~ 
. / ~ \  

/ \ 
~ \ . .  , 0.04 

0.1 0.4 0.7 y 

FIGURE 3 

k~O 
/ \ .  

/" Ir =3 \ ' ,  

/ 

t /  k = 6  _ _  ~ , 
y 

0.1 0.4 0.7 

0.2 

0.04 

¢..0 E -O) i 

i = I  

/ \ .  

0.1 0.4~N~" -- ~0.7 y 
\ 

\ 
\ 

W E - CO//7 

k = 0  

//==,\ 

O. 1 0.4 x~, 
\ ' x . _  

"\,., 

Type II. Neumann boundary condition, 

aqJ (c, y ) =  0, aco 
a x  y) = 0; 

Type III. Discrete artificial boundary condition (3.25) 
or (3.22) with varied k. 

In each example, the results are compared with an "exact 
solution." This solution is obtained by using an outflow 
boundary very far from the obstacle or step and by using 
Neumann boundary conditions on this outflow boundary. 
To be precise, the distance between the inflow boundary 
and the outflow boundary for the "exact solution" is twice 
the distance in our example. 

EXAMPLE 1. Flow in a horizontal channel with a rec- 
tangular cylinder obstacle, as shown in Fig. 1. The obstacle 
is defined by the domain 

C2,= {(x, y)[ 1.2 < x <  1.6, 3 L <  y <  4L}. 

FIGURE 4 The bounded computational domain f2 T is given by 

x = b  

X = C  

FIGURE 5 

, y = L  

. y = 0  

streamlines vorticity 

FIGURE 6 

QT= {(x, y ) l b < x < c , O < y < L } \ ~ i  

and u ~ ( y )  = ( 4 u ~ / L  2) y ( L  - y); hence ~o~(Y) and co~(y) 
are given by 

4uo~ 
cow(y) = ~ -  ( 2 y -  L), 

4 u ~  

T A B L E  II 

Norms k=0 k= 2 k=4  k=6 k= 8 

llAk-A.~l I 0.210E+02 0.466E+00 0.110E 02 0.125E-12 0.135E-48 
I1~,11 0.122E+03 0.153E+01 0.612E-02 0.321E-11 0.245E-48 
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We take b=0 ,  c=4.4,  L=1 .4 ,  u ~ = l . 0 ,  v=0.01, and 
Re = 1/v = 100. 0.0ol 

Let (e) E, ~bE) denote the "exact solution" (Fig. 2) and 
(o9/, ~b~) (i = I, II, III) denote the numerical solutions corre- o.ooo2 
sponding the boundary condition types I, II, and III on the 
artificial boundary F~. The error ~o e -  e h, ~b e -  ~b+ on the 
boundary F,. are given in Fig. 3. Let 

N 1/2 

er r ( fe - f , . )  = {/~1. (fe(c, yj)--~(i(C, y j ) ) 2 }  

f f ~ - ~ y ~ . ,  

. /  " ' \  
/ / /  i=III "\ x 

", 0.4 )~ 0.7: Y 
\ / 

i=II 

[ O J E -  i 0,048 co 

0.0096~ \ . / /  ---,, / 
L ' /  ~=m "~ 
/["--7 \ o.~ W~-6.z ' 

/ +~, \ \  

F I G U R E  7 

then the errors e r r (we-oh) ,  err(~E--~ki) are given in 
Table I. 

In the practical computation, the integers k in formula 
(3.22) or (3.25) are taken by k =  6. The influence of k is 
shown in Fig. 4. 

EXAMPLE 2. Backward-facing step flow (Fig. 5). The 
bounded computational domain is given by 

L or= (x, y)lb<x<~b+L,-~< y<L; 

L ) 
b+-~<<.x <c, O< y<L  . 

0.0014 

0.00028 

0.0~ 

c = 3.5L -, , ' , , i 

¢ = 2.5L 

0.01~ 
Y 

F I G U R E  8 

°~e -~m 

~0.~" C = 3.5L ""~0.7 

c = 2.5L 

, y  

The boundary conditions o n  / ' b :  {x=b,  b/2<~ y<<.L} is 
given by 

16u~ 4 ~o(b, y) = - - ~  ( y - 3L), 

8u°° ( y - -2  ) 2 (SL-4  y ). 4,(b, y) = -UZ 

x = b  
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, .y=L 

- y=O X---C 

The boundary conditions on F,. = {x = c, 0 ~< y ~< L} are the 
same as in Example 1. 

The constants b, c, L, u~,  and Re are given by b = 0, 
c = 2.1, L = 0.7, u~ = 0.25, and Re = 100. The comparisons 
of the "exact solution" o)E, Ce (Fig. 6) and the numerical 
solutions (coi, ~'i) ( i=  I, II, III) are given in Fig. 7. The 
influence of the location of the artificial boundary F~ is 
shown in Fig. 8. 

Table II shows that when k ~ + oo, the matrix sequence 
{-4k }, { C~ } converges to -4oo and Coo = 0 rapidly. The norm 
IIAll is defined by 

/ A / :  max la,jl. 
1 ~< i~< 2 N - -  2,1 <~j<~2N--2 

EXAMPLE 3. Forward-facing step flow (Fig. 9). The 
bounded computational domain g2 T is given by 

£2r= {(x, y)lb<x<~b+ 3L, - L  < y<L; 

b+ 3L <~x <c,O< y<L}. 

streamlines vorticity 
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0.00002 

0.000004 
/ / /  "~ 

/ = I l l  ' .  

;',,o.i 0.4 / . /6 . /  y 
"k.\ ~" 

i , / 
i=1 
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0.006 

0.001 

('dE -~O i 

', _~i~m~ , / 

-7 o., 

/ y r / " 



208 HAN, LU, AND BAO 

TABLE III 

Errors i = I i = II i = III 

co 1.2311 0.4648 0.4190 
0.0047 0.0027 0.0018 

On  the b o u n d a r y  F b = {x = b, - L ~< y ~< L }, the b o u n d a r y  
condi t ions  are given by 

re(b, y )  = ~ y, 

Fb are  shown in Table  I l l  where  (me, 0E) is the "exact  
solut ion."  F r o m  Table  I I I  we can see the new b o u n d a r y  
cond i t i on  is the best  one. But the effect of using different 
type b o u n d a r y  condi t ions  at  the inflow b o u n d a r y  is not  
sensitive. 

The examples  show that  the discrete artificial b o u n d a r y  
cond i t i on  presented in this paper  is very effective. 
Especial ly,  the convergence of  i terat ive me thod  is fast. 
F u r t h e r m o r e ,  this a p p r o a c h  can be appl ied  to m a n y  
p rob lems  of incompress ible  viscous flows. 
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The b o u n d a r y  cond i t ions  on F ,  are the same as in Exam-  
ple 1. We take b = 0 ,  c = 2 . 1 ,  L = 0 . 3 5 ,  uo~ =0 .5 ,  v=0 .01 ,  
and  R e =  100. The compar i son  of the "exact  so lu t ion"  
(Fig. 10) m E, 0 e ,  and  the numerica l  so lu t ions  (co i, 0 i )  
( i =  I, II,  I I I )  on the artificial b o u n d a r y  Fc are given in 
Fig. 11. 

EXAMPLE 4. The  effect of using the new cond i t ion  at the 
inflow. We consider  the backward-fac ing  step flow as shown 
in the Fig. 5. The b o u n d e d  compu ta t i ona l  d o m a i n  and the 
N e u m a n n  b o u n d a r y  condi t ions  on Fc are the same as those 
in Example  2. We take  b = 0 ,  c = 2 . 1 ,  L = 0 . 7 ,  u~  = 1, and  
Re = 100. In this example ,  the three different types bound-  
ary condi t ions  at  inflow b o u n d a r y  Fb are used in our  com- 
putat ion.  We ob t a in  three solut ions  (mi, Oi) (i = I, II, III) .  
The errors  e r r ( m e - m i )  and  err(O E -  Oi) on  the b o u n d a r y  
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